

VIOSIL SQ

HIGH-END FUSED SILICA (SYNTHETIC QUARTZ)

Description

VIOSIL SQ produced by ShinEtsu in Japan is a highly transparent and highly pure synthetic silica glass. It shows excellent optical properties such as the absense bubbles or inclusions. It is ideally used for photomask substrates and can be produced with a maximum size of approx. 1300x1500mm in different heavier wall thicknesses. There is also another grade available which grade is called Viosil SX. GVB mainly treats and stores material from Viosil SQ, so this data sheet mainly focuses on this material grade.

Special properties of VIOSIL SQ

- Transmissivity: High transmissivity to deep UV ideal for example for UV nano-imprints. The material is suitable for a wide transmission range from UV to IR
- UV-resistance: UV-resistance has been established from extensive use in photomask substrates.
- Chemical resistance: high stability against a variety of solvents.
- Low Thermal Expansion: Synthetic Quartz offers a high stability when exposed to temperature variations.
- High heat-resistance and mechanical strength: high dimensional stability over a wide temperature range
- Excellent surface quality: high flatness and uniformity of thickness, low surface roughness averages
- Dialectric properties: low dialectric loss at GHz frequencies
- Fluorescence: no fluroescence over a wide range of wavelengths from UV to IR

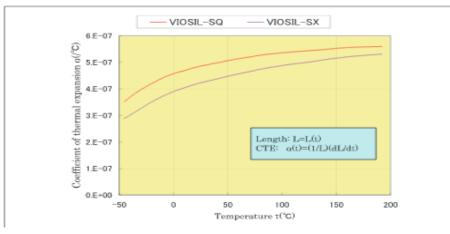
-1-

SM

Typical applications

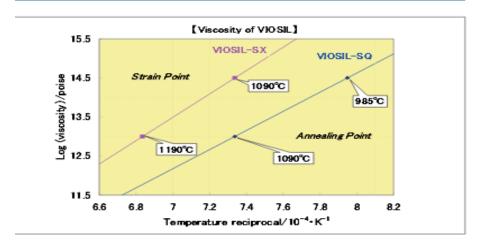
- protective windows for laser applications
- photomask substrates
- general optical applications
- optical items like lenses and prisms
- · mirror substrates
- subtrates for optical coatings

PROPERTIES OF VIOSIL SQ


Chemical Composition (Impurities/ppb)

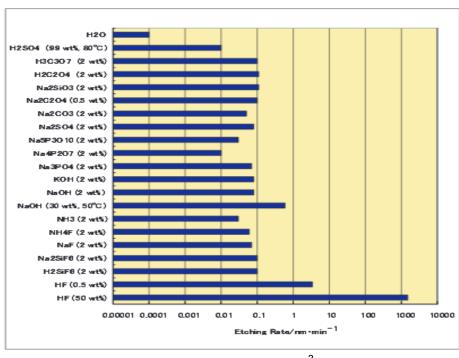
OH- content: 1200ppm

Li	Na	Mg	Al	Ca	Ti	V	Cr	K
<1	<1	<1	<1	<1	<1	<1	<1	<1
Mn	Fe	Co	Ni	Cu	Zn	Ge	Zr	Мо
<1	<1	<1	<1	<1	<1	<1	<1	<1
Cd	Sn	Sb	Pb	В	Р	U	As	SiO ₂
<1	<1	<1	<1	<1	<1	<0.1	<0.1	99.99%


Thermal Properties

Thermal Expansion

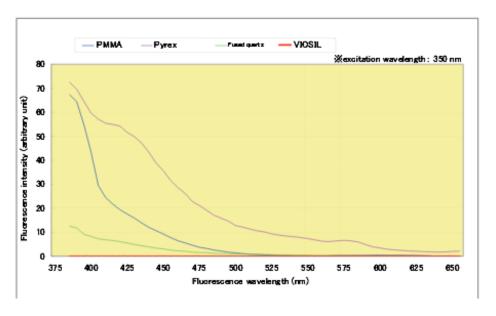
Heat Resistance

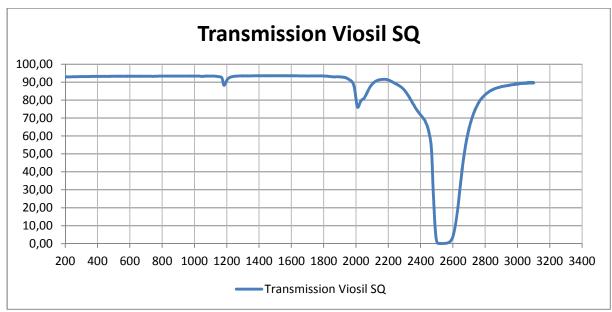


Mechanical Properties

Specific gravity	2.202 g/cm ²
Young's Modulus	7380 kgw/mm ²
Poisson's Ratio	0.17
Vicker's hardness (Hv)	784 kgw/mm ²
Shear modulus (G)	3150 kgw/mm ²

Chemical Properties


Chemical Durability


Optical Properties

Fluorescent Intensity

Refractive Index:	1.461 (532nm) 1.449 (1064nm)
Absorption coefficient: Expansion Coefficient	<4x104 5.5x10-7

Optical Transmission in the VIS

Measured thickness is 2.3mm

-4- SM

Visual light transmission in numbers

X-Y							
Data Inter	val	5.00	5.00				
(nm)	%T	(nm)	%T	(nm)	%Т		
799.9	93.331	599.9	93.269	399.9	92.845		
794.9	93.017	594.9	93.067	394.9	92.780		
789.9	93.197	589.9	93.097	389.9	92.775		
784.9	93.532	584.9	93.077	384.9	92.615		
779.9	93.017	579.9	93.127	379.9	92.713		
774.9	93.291	574.9	93.230	374.9	92.737		
769.9	92.473	569.9	93.290	369.9	92.733		
764.9	93.387	564.9	93.066	364.9	92.338		
759.9	93.222	559.9	92.999	359.9	92.580		
754.9	93.007	554.9	92.994	354.9	92.487		
749.9	93.271	549.9	93.146	349.9	92.552		
744.9	93.210	544.9	92.981	344.9	92.259		
739.9	92.911	539.9	93.216	339.9	92.436		
734.9	93.534	534.9	93.149	334.9	92.452		
729.9	93.343	529.9	93.107	329.9	92.375		
724.9	93.301	524.9	93.032	324.9	92.221		
719.9	93.274	519.9	93.041	319.9	92.341		
714.9	93.309	514.9	93.104	314.9	92.180		
709.9	93.351	509.9	93.152	309.9	92.162		
704.9	93.127	504.9	92.873	304.9	91.983		
699.9	93.435	499.9	92.881	299.9	92.052		
694.9	93.026	494.9	92.981	294.9	91.997		
689.9	93.662	489.9	93.019	289.9	91.791		
684.9	92.930	484.9	93.019	284.9	91.752		
679.9	93.270	479.9	92.932	279.9	91.722		
674.9	93.310	474.9	93.099	274.9	91.636		
669.9	93.591	469.9	93.015	269.9	91.655		
664.9	92.975	464.9	92.791	264.9	91.354		
659.9	92.832	459.9	92.890	259.9	91.435		
654.9	93.327	454.9	92.959	254.9	91.393		
649.9	92.980	449.9	92.790	249.9	91.304		
644.9	92.733	444.9	92.829	244.9	91.136		
639.9	93.039	439.9	92.836	239.9	90.933		
634.9	93.409	434.9	92.865	234.9	90.977		
629.9	93.008	429.9	92.917	229.9	90.797		
624.9	93.123	424.9	92.864	224.9	90.548		
619.9	93.110	419.9	92.851	219.9	90.607		
614.9	93.152	414.9	92.885	214.9	90.253		
609.9	93.430	409.9	92.996	209.9	89.943		

-5-

SM

Electrical Properties

Dielectric Constant (20 °C)	3.9 (1 MHz); 3.9 (100 MHz)				
	3.9 (30 GHz); 3.9 (60 GHz)				
Doelectric loss	<1x10 ⁻⁴ (1 MHz); <1x10 ⁻⁴ (100 MHz)				
	<4x10 ⁻⁴ (30 GHz); <7x10 ⁻⁴ (60 GHz)				

Inclusion (including bubble)

Material	Ф ≤ 0.1	Ф ≤ 0.3	Φ ≤ 0.5		Φ ≤ 0.7	Ф ≤ 1.3	Φ ≤ 2.0
	total inclusion of mm² per cross section of 100x100mm						
Viosil SQ	≤ 0.03	≤0.01	≤0	.25	≤0.5	0	0

Treatment and cleaning of Optical Glass

A thorough and appropriate cleaning and treatment of optical glass products is essential to maintain the properties. The following recommendations should be noticed:

Our recommendations for cleaning

- Do not clean parts of quartz glass with alkali detergents.
- Contaminations with fat can be removed with alcohol.
- Acids in 5 % hydrofluoric acids for 2-3 minutes.
- Subsequent cleaning in distilled or deionised water.
- After cleaning, touch the quartz glass only with clean gloves.
- If possible, process quartz glass only after cleaning or pack it carefully.

Quartz glass should be touched only with gloves. You should also take care that the rooms, tools and machines meet high cleanness demands.

GVB GmbH – Solutions in Glass Nordstern-Park 2 52134 Herzogenrath, Germany +49/(0)2406/6655880 +49/(0)2406/66558810 e-=: info@g-v-b.de Internet: http://www.g-v-b.de

Subject to change without prior notice, errors excepted!

-6-

Unit: mm